0% Complete
صفحه اصلی
/
4th international edition and 13th Iranian Conference on Bioinformatics
Element-Specific Estimation of Background Mutation Rates in Whole Cancer Genomes Through Transfer Learning
نویسندگان :
ّFarideh Bahari
1
Reza Ahangari Cohan
2
Hesam Montazeri
3
1- انستیتو پاستور ایران-
2- انستیتو پاستور ایران-
3- دانشگاه تهران
کلمات کلیدی :
background mutation rate estimation،PCAWG project،element-specific BMR modeling،transfer learning،cancer driver discovery
چکیده :
Mutational burden tests are essential for detecting signals of positive selection in cancer driver discovery by comparing observed mutation rates with background mutation rates (BMRs). However, accurate BMR estimation is challenging due to the diversity of mutational processes across genomes, complicating driver discovery efforts. Existing methods rely on various genomic regions and features for BMR estimation but lack a model that integrates both intergenic intervals and functional genomic elements on a comprehensive set of genomic features. Here, we introduce eMET (element-specific Mutation Estimator with boosted Trees), which employs 1,372 (epi)genomic features from intergenic data and fine-tunes it with element-specific data through transfer learning. Applied to PCAWG somatic mutations, eMET significantly improves BMR accuracy and has potential to enhance driver discovery. Additionally, we provide an extensive analysis of BMR estimation, examining different machine learning models, genomic interval strategies, feature categories, and dimensionality reduction techniques.
لیست مقالات
لیست مقالات بایگانی شده
Exploring the anti-inflammatory potential of the silymarin against IL-17A: in silico molecular docking
Tooba Abdizadeh
Targeting Protein in Neurodegenerative Diseases: A Computational Approach
Reyhaneh Ebrahimi - Seyed Hassan Alavi - Fayaz Soleymani - Fatemeh Zare-Mirakabad
In-silico investigation of bioactive peptides with anti-Alzheimer potential derived from bovine milk αs1-casein protein
Mohammad Jahangiri - Leila Zarandi-Miandoab
New inhibitors of the Toxoplasmosis by in-silico drug repurposing
Milad Jaberi - Masoud Aliyar - Mosleh Kadkhodamohammadi - Parva Karimimousivandi
Potential of Lavender extract to inhibit efflux pump AdeB in multidrug resistant of Acinetobacter baumnii
Masoumeh Shakarami - Behzad Shahbazi - Ladan Mafakher
Multi-Target Drug Discovery for Rheumatoid Arthritis: A Comprehensive Computational Approach Using Bioactive Compounds
Pegah Mansouri - Pardis Mansouri - Sohrab Najafipour - Seyed Amin Kouhpayeh - Akbar Farjadfar - Esmaeil Behmard
Using structural controllability to analyze signaling pathways and PPI networks for the identification of therapeutic targets in colorectal cancer
Zoha RashidiPour - Farinaz Roshani
Leveraging Machine Learning Models for Virtual Screening of ZINC Database to Identify JAK1 Inhibitors
Negar Abdolmaleki - Hamid Mahdiuni
Using interpretable deep learning models and multi-objective data for computational discovery of new drugs
Masoud Ahmadlou
HLA Class I Alleles as prognostic marker in Hepatocellular Carcinoma
Shahram Aliyari - Zahra Salehi - Mohammad Hossein Norouzi-Beirami - Kaveh Kavousi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.1