0% Complete
صفحه اصلی
/
4th international edition and 13th Iranian Conference on Bioinformatics
Discovering Moonlighting Proteins with AI and Explainability
نویسندگان :
Masoud Mahdavifar
1
Milad Besharatifard
2
Fateme Zaremirakabad
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Moonlighting proteins،Machine learning،Protein function annotation،Computational biology
چکیده :
Moonlighting proteins perform multiple, distinct biological functions beyond their primary role, posing challenges in traditional protein function annotation. In this study, we present an artificial intelligence-based framework to identify moonlighting proteins, employing advanced machine learning models integrated with Local Interpretable Model-agnostic Explanations. Local Interpretable Model-agnostic Explanations provides interpretability by highlighting the features driving the model's predictions, bridging the gap between performance and explainability.Our results demonstrate 92% accuracy in distinguishing moonlighting proteins from non-moonlighting proteins and 97.6% area under the curve, validated against benchmark datasets. Furthermore, Local Interpretable Model-agnostic Explanations (LIME) explanations reveal biologically plausible insights, such as domain-level correlations and structural motifs associated with multifunctionality. This interpretability not only enhances trust in artificial intelligence predictions but also offers novel hypotheses for experimental validation. This work signifies a step toward transparent and reliable artificial intelligence applications in computational biology.
لیست مقالات
لیست مقالات بایگانی شده
Simultaneous overexpression of CD70 and downregulation of CD84 as a prognostic marker for glucocorticoid resistance in B cell Acute lymphoblastic leukemia
Mohammad Hossein Shakib Manesh - Soheila Rahgozar
Investigating the Role of EMT genes in Multiple Myeloma: A Bioinformatic Approach
Seyedeh Zahra Mousavi - Hamid Mahdizadeh - Mehdi Totonchi
Integrating Biological Networks and Deep Learning for Microbe-Disease Prediction
Sobhan Ahmadian Moghadam - Zahra Ghorbanali - Fatemeh Zare-Mirakabad - Hesam Montazeri
Identification of a natural specific inhibitor for Akt1 protein through molecular docking studies and evaluation of DFT calculations and molecular dynamics simulations
Forough Pakzadi - Yaghub Pazhang - Ebrahim Nemati-Kande
Phylogenetic and In Silico Analysis of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family in Crops
Amin Nasirpour - Abbasali Emamjomeh - Nasibe Chenarani
A computational approach to identify the biomarker based on the RNA sequencing data analysis for Alzheimer’s disease
Atena Vaghf - Shahram Tahmasebian - Nayereh Abdali
A New Method in Analyzing Drug-Drug Interaction Using Artificial Intelligence: Combination of Channel and Spatial Maps in Deep Attention Networks
Seyed Vahab Shojaedini - AmirReza Moeini
Element-Specific Estimation of Background Mutation Rates in Whole Cancer Genomes Through Transfer Learning
ّFarideh Bahari - Reza Ahangari Cohan - Hesam Montazeri
Encoding the gRNA-DNA Pairs with Deep Transformers to Predict off-target Effects of CRISPR
Roghayyeh Alipanahi - Leila Safari - Alireza Khanteymoori
Novel lncRNA‐miRNA‐mRNA competing endogenous RNA regulatory networks in glioma
Asoo Khani - Amir-Reza Javanmard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.7.0