0% Complete
صفحه اصلی
/
4th international edition and 13th Iranian Conference on Bioinformatics
Physical parametric study of bacterial biofilm disruption and removal by jet impingement: A CFD investigation
نویسندگان :
Fatemeh Ebrahimi Tarki
1
Mahboobeh Zarrabi
2
Mahkame Sharbatdar
3
Ahya Abdi Ali
4
1- Alzahra University
2- Alzahra University
3- K. N. Toosi University of Technology
4- Alzahra University
کلمات کلیدی :
Bacterial biofilm،Viscoelasticity،RANS،Numerical simulation،Shear-thinning
چکیده :
Bacterial biofilm formation is one of the most critical challenges in industrial and health systems. It is the leading cause of nearly 80 % of clinical infections. Biofilms are usually evaluated from the physiological point of view as microbial cells enclosed in an extracellular polymer and represent a complex, dynamic bacterial community. Cohesive mechanical forces hold the bacteria within the biofilm together. These forces contribute to the biofilm’s mechanical and structural stability, resulting in its viscoelastic properties. Studying the biofilm’s mechanical properties as a viscoelastic matter can provide a better understanding of the biofilm’s characteristics and the survival strategies of bacteria in the biofilm state of life. In the present study, a 2D-axisymmetric RANS-CFD simulation model using the Volume Of Fluid (VOF) method was developed to track changes in biofilm surface and ripple formation across six biofilm thicknesses ranging from 15 μm to 115 μm, two substrate geometries including flat and curved, and two substrate roughnesses of 0.4 μm and 0.9 μm height. A modified Herschel- Bulkley model was employed to capture the biofilm’s non-Newtonian shear-thinning behavior under highvelocity gas jet impingement. The results revealed the importance of biofilm thickness, substrate geometries, and properties like roughness in biofilm’s mechanical behavior. Higher thickness of biofilm resulted in smaller jet-impingement region and more significant ripples formation. Biofilm on curved substrates decreased in thickness more rapidly than those on flat substrates. The substrate’s geometry impacted biofilm folding patterns, removal, and mechanical behavior. Selected substrate roughnesses did not create any resistance against the mechanical removal of biofilms. Here, we successfully captured biofilms’ non-Newtonian and shear-thinning behavior with numerical simulations consistent with previously reported experimental results. This could benefit industrial and health systems by tackling biofilm-related challenges and developing more accurate and detailed models of biofilms to optimize tools for drug testing or screening and enhance the models for in-vitro and in-vivo analysis.
لیست مقالات
لیست مقالات بایگانی شده
Insilico study of CD4+ T cells epitopes in ORF1ab protein of SARS-COV-2 for Iranian common MHCII alleles
Fatemeh Hajighasem - Atefeh Shirkavand
In Silico Analysis of the R410W Mutation in ZP1: Effects on Protein Stability and Interactions
Seyedeh Zahra Mousavi - Pegah Kouhi - Zeinab Rokhsattalab - Mehdi Totonchi
Machine-learning based biomarker discovery for Striga resistance in sorghum
Leyla Nazari - Afshar Estakhr
Accelerating Diffusion-Based Graph Generative Models for De Novo Drug Design via Hessian Trace Approximation
Negin Bagherpour - AmirHossein Heidari - Alireza Fotouhi Siahpirani
Attention based Graph Neural Network for Identifying Coding and Non-coding Breast Cancer Drivers
Bahar Mahdavi - Mitra Nemati Andavari - Mehdi Rajabizadeh - Mansoor Rezghi
Identifying Key Genes, miRNAs, and lncRNAs in Lennert Lymphoma Through Comprehensive Network Analysis of Diverse Omics Data
Fatemeh Shadvar
Enhancing NAFLD Diagnosis with AI: Insights from the Persian Fasa Cohort Through Advanced Machine Learning Techniques
Marzie Shadpirouz - Mohammad Reza Zabihi - Zahra Salehi - Kiarash Zare - Mohammad Mehdi Naghizadeh - Kaveh Kavousi
Improved COVID‐19 Diagnosis Using a Hybrid Transfer Learning Model with Fuzzy Edge Detection on CT Scan Images
Hassan Salarabadi - Mohammad Saber Iraji - Mehdi Salimi - Mehdi Zoberi
Bioinformatics and computational Studies on Highly Conserved Neurocalcin Protein
Ali Eyvazi - Khosrow Khalifeh - Emran Heshmati
Comparative Analysis of Enzybiotic Gene Abundance Across Environmental Microbiomes with Varied Plastic Pollution Levels
Arad Ariaeenejad - Arman Hasannejad - Donya Afshar Jahanshahi - Mohammad Reza Zabihi - Shohreh Ariaeenejad - Kaveh Kavousi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.1